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Abstract 

Cloud Computing has been one of the distributed and effective computing paradigms; it provides 

enormous opportunities to tackle the scientific problems that possesses large scale attribute. 

Despite of being such a flexible computing paradigm, it possesses several challenges and fails to 

achieve the required QoS. Reliability requirement is one of the most important quality of services 

(QoS) and should be satisfied for a reliable workflow in cloud computing. Primary-backup 

replication is an important software fault-tolerant technique used to satisfy reliability requirement. 

Recent works studied quantitative fault-tolerant scheduling to reduce execution cost by minimizing 

the number of replicas while satisfying the reliability requirement of a workflow on heterogeneous 

infrastructure as a service (IaaS) cloud. However, a minimum number of replicas does not 

necessarily lead to the minimum execution cost and shortest schedule length in a heterogeneous 

IaaS cloud. In this research work, we develop a ODS (Optimal duplication strategy) for fault 

tolerance and cost driven mechanism also named as ODS-FTC; ODS-FTC uses the iterative based 

approach that selects VM and its duplicates that has minimum makes pan in case of individual 

task. Moreover, this provides the utility against failure occurrence and optimal selection with 

optimal redundancy causes the cost to be optimal. ODS-FTC is evaluated considering the scientific 

workflow like cyber shake, LIGO, montage and SIPHT; evaluation is carried out through 

designing instances. Furthermore, in case of all instances, ODS-FTC is proved to be marginally 

improvised than the existing model. 

Keywords: Fault Tolerance, Reliability Requirement, Cost optimization, makes pan, efficient 

scheduling,  
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1 Introduction 

Cloud Computing services are considered as primary effective commercial service model for 

computation that provides the computing platform as well as computing resources to its users; 

moreover, users can opt for “pay as you go”. Moreover, this virtual computing model provides the 

flexibility for users to present the requirement of QoS to providers [1]- [5]. Moreover, recent 

development in cloud computing have caused the extensive development in workflows application 

in various fields such as astrophysics, astronomy and bioinformatics in order to analyze these 

applications considering the CC (Cloud Computing) platforms. Further, characteristics of CC-

model includes the dynamic resource allocation, storage resources; moreover, these characteristics 

can be exploited through efficient scheduling which solves the specific problems discussed later 

in same section to improvise the system performance [6]- [9]. Workflow scheduling is designed to 

optimize the heterogeneous cloud model; in here users focus on the QoS satisfaction which 

includes the cost execution, deadline while submitting the workflow applications. Furthermore, 

increase in demand for computation and services in scientific workflow application possesses 

problem of energy consumption, deadline constraint, makes pan optimization and cost 

minimization. thus, workflows are modelled through DAG (Direct Acyclic Graph); DAG is a 

workflow modelling where node is task and edge is the interlink among the task [10]-[12]. 

 

Figure 1 typical DAG model 

Epigenomics workflow is a highly pipelined biology application which maps the epigenetic state 

of human cells. Most of its tasks have high CPU and low I/O utilization. LIGO workflow is used 

in the physics field to detect gravitational waves and has many CPU intensive tasks that consume 

large memory. [33]. We can synthesize workflows with different numbers of tasks using the 

generator provided by Pegasus project [34] and these workflows are available in the format of 

DAX (Directed Acyclic graph in XML). Execution time of the tasks in DAX files is based on a 

quad core, 2.4 GHz Intel Core 2 processor whose processing capacity is approximately equal to 8 

ECUs (2.33 × 4/1.2 ≈ 8). For each of these workflows, we consider three sizes: Small (about 50 

tasks), Medium (about 200 tasks) and Large (about 1000 tasks). Moreover, for each size 20 

different instances are generated with the same structure but with different communication and 

computation workload. In general energy aware scheduling is developed by researchers which 

focuses on the green computing and tries to minimize the cost; most probably DVFS is used as the 
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mechanism to reduce the energy. However, energy aware mechanism only focusses on the energy 

minimization and ignores fault tolerance and cost. Scientific workflows require huge number of 

resources to process the big data on clouds; furthermore, real time cloud services demand various 

Computation capacities which causes the increase in transient failure. Further, increase in 

complexities and failures puts an adverse effect on the resource management which results in QoS 

issue, especially reliability requirement [13]- [15]. Fault tolerance scheduling mechanism is one 

of the effective mechanisms to improvise the workflow reliability and further backup is used for 

satisfying the reliability requirement. Existing fault tolerance model which has been discussed in 

the next section uses one backup in case of failure; although as a novel concept it was interesting 

earlier but due to complex scientific workflows it fails model fails to tolerate more than one failure. 

Thus, it is necessary to design and develop a fault tolerance model that can tolerate multiple failure 

and enhance the reliability requirement; also cost optimization is one of the essential as optimal 

cost indicates the model efficiency [16] [17].  

1.1 Motivation and contribution of research work  

Fault-tolerant scheduling is an effective method to enhance the reliability of a workflow, and 

primary-backup replication is an important software fault-tolerant technique used to satisfy the 

reliability requirement. Existing fault tolerant scheduling algorithms either use one backup for 

each primary to tolerate one failure based on the passive replication scheme [18], [19], [20], which 

cannot tolerate potential multiple failures, or use fixed ε backups for each primary to tolerate ε 

failures in the same time based on active replication scheme, which can satisfy the reliability 

requirement, but can cause high redundancy and cost. Further, contribution of research work is 

highlighted through below points. 

1. We design and develop a fault tolerance and efficient mechanism which satisfy the 

reliability requirements; moreover, proposed mechanism is named ODS-FTC (optimal 

duplication strategy with fault tolerance and cost optimization).  

2. ODS-FTC uses the iterative approach for selection of VM and available duplicates that has 

minimum redundancy. 

3. ODS-FTC is evaluated considering the cost parameter; In general, as the VM fails it 

requires more resources to cope up the failure and thus there is certain spike in cost. 

4. Furthermore, scientific workflow is considered to prove the model efficiency; in order to 

evaluate four instances are designed that includes the certain number of VM.  

5. comparative analysis is carried out and proposed methodology proves to be efficient than 

the existing model.  

This research is organized in particular way as first section starts with background of computation 

and need of cloud computing phenomena; further we discuss the necessity of scheduling 

mechanism and end the section by motivation and contribution of research work. Second section 

focuses on the reviewing the various existing protocol and their shortcoming; further in third 

section ODS-FTC along with its mathematical formulation is designed. ODS-FTC is evaluated in 

fourth section by considering the various instance. 
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2 Related Work 

Scientific workflow scheduling along with the optimization is considered as one of the essential 

research topic in cloud computing and further several aspects have been explored such as varying 

the number of workload, workflows; different platforms, different scheduling mechanism. 

Furthermore, in case of all the optimization objectives remains make span, energy consumption, 

cost, reliability or multi-objective; hence this section focuses on different related work in 

accordance with the fault tolerance along with the cost optimization. In [18], an online scheduling 

algorithm was developed to make robust mechanism against the missing information; in here, it 

was observed that in case of potential resource failure, workflow scheduling is more complicated. 

Further, a failure aware mechanism was proposed through Markov chain based prediction model 

of resource availability in [19]; however, the model was highly dependent, another dependent 

model was developed in [20] where replication strategy was adopted and additional schema was 

adopted in case of further failures, this results in high performance penalties, thus in [21], work 

queue with replication aka WQR was introduced considering that resource provisioning in cloud 

is elastic .In general fault tolerance is achieved through two distinctive approach i.e. passive 

replication [22] and active replication [23]; moreover, fault tolerance strategy can also be 

addressed as the improvisation in reliability which further minimizes the cost [24]- [27]. Passive 

replication refers to the backup replica which will be executed considering the VM whenever there 

is failure of primary one; however, it is quite difficult to adopt the passive replication through only 

backup [28] [29]; also, passive replication adoption costs are higher and the replication process 

leads the unpredictable redundancy. In case of active replication, primary one is replicated number 

of times in given each VM, where the task can be executed successfully. In [23], Max Re algorithm 

were presented for reliability requirement which produce the cost as well as redundancy; in here 

reliability requirements of entire task are similar and the requirement of each task is 

mathematically to n square root of defined reliability requirement where n is considered as the 

workflow. In [24], optimal resources mechanism is developed for assurance of reliability 

requirement for minimizing the reliability requirements which was compared with the previous 

mechanism; however, it possesses high cost to minimize the reliability requirement and 

redundancy. Similarly, [24] introduced ERRM approach which performs the iterative based 

approach for further implementation of quantitative based replication; this model does possess 

low-cost redundancy minimization for smaller workflows; however, fails miserably when used in 

large workflows this makes it as poor efficiency model. 

The proactive fault-tolerance methods are applied in fault prediction as to replace the potential 

sections that would encounter fault, thus preventing fault event. [30] introduced a fuzzy task 

distribution method where by correct load distribution, the user task requests among available 

resources assure fault-tolerance by applying fault detection and discrepancies, which in turn reduce 

fault events in the system. Their experimental results indicate their method, when compared to 

other load balance algorithms, although the evolutionary and multi objective algorithms and 

energy utilization are not addressed, but it reduces fault event in a significant manner. [31] 

modified NSGA-III algorithm where intelligent fault tolerance technique is added on to increase 
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system utilization. Moreover, the multiagent devices applied in their approach are highly 

contributive in many engineering aspects like service provision transportation, intelligent 

networks, cloud computing and complicated parallel computational devices. Therefore, their 

proposed intelligent system provides relatively stable assessment without evaluating fault 

distribution upon transient fault events. The hybrid fault-tolerance methods are a hybrid of reactive 

fault tolerant and proactive fault tolerant methods. [32] introduced a hybrid method for network 

fault tolerant and hardware fault tolerant where the square matrix multiplication concept is applied. 

Because in cloud computing data storage in a network takes place in remote sense, most faults 

occur due to system failure and network congestion. In their method, the servers’ health is assessed 

through a health monitor, which predicts fault events and applies a migration technique to reduce 

data loss while no discussion is run on evolutionary and multi-objective algorithms and prediction 

through neural network. 

3 Proposed Methodology 

In general, cloud computing possesses high failure rates due to the existence of huge number of 

components and servers that are filled with workloads; moreover, these failures may lead to the 

constraint in VM availability; however, this issue is solved through the optimal fault tolerance 

strategy. Hence this section of the research presents the mathematical modelling of proposed 

methodology ODS-FTC which aims at providing the optimal reliability requirement and minimize 

the cost further. ODS-FTC comprises various sub section which are discussed below. 

3.1 Preliminaries  

Let’s consider a particular set of Virtual Machine configuration denoted through variable  F where 

F = {F0, F1 … . . , Fm }; moreover, this configuration comprises different parameter such as cost, 

memory, total number of VM and memory. Furthermore, considering the VM set, VM instance 

can be designed through the variable named V which is given as V = {V0, V1, … … , Vh } where Vh 

directly implicates the instances of VM with configurations; also, it is to be noted that ODS-FTC 

is designed for the parallel processing-based machine. 

3.2 Workflow modelling 

Let’s consider a scientific workflow model with variable Z, which is further elaborated asZ =

(W, F) where both semi variables indicate the task set and dependencies; dependencies are 

commonly observed in the complicated, scientific and large workflow model. Furthermore, we 

initialize few additional parameters that are associated with the task are α(vx), β(vx), γ(vx) and 

δ(vx); for instance, if the task from v are performed with respect to the resources w, then workflow 

cost model can be mathematically computed through below equation.   

ℶ(vx , vy) =  {

ed_wt𝕨𝕩

band𝕜,𝕝
       if Vl is not equal to Vm

0    if Vl is equal to Vm

 

 

(1) 

Also bandwidth resources can be designed as 
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ℵl,m = opt(ℵ(ρ(Vl)), ℵ(ρ(Vm))  ) (2) 

  

3.3 Modelling of task with respect to the fault tolerance 

Let’s assume that individual task in task set is given same interval to perform the execution and 

the interval parameter of task can be mathematically designed as below equation; where np is 

considered as the ideal fault tolerance level along with the frequency of operation denoted as ip 

Rp = [√(((np Fp)(Ftip)
−1

) − 1)] 
(3) 

The above equation makes the situation ideal where there is no occurrence of failure; which can 

be given as  

τn = Fp + Rp × fv × ip (4) 

Further, we assume that task wx  assigned to resource Vl and considering the above ideal situation, 

ideal execution can be formulated as below equation where Q(wx, Vl) implicating the total number 

of tasks along with Ql as overhead. 

ωbest(wx, Vl) = (τ(wx  )) (vn((Vl)))−1 + Q(wx, Vl). Ql (5) 

 

Meanwhile, we compute the length of interval  

ε(wx, Vl) = vm(τ(Vl)) (τ(wx))
−1

. (Q(wx, Vl) + 1)−1 (6) 

Once the ideal case is designed, it is also important to formulate the worst situation where there is 

highest error occurrence with task and virtual machine defined earlier; further Q(wx, Vl)implicates 

the total overhead and fault tolerance overhead is given through ε(wx, Vl) 

ET𝕪(wx, Vl) =  ((wx))
−1

. (vm (τ(Vl)))
−1

+ seg(wx, Vl). Imax + 2. P(wx, Vl). Ql 
(7) 

Henceforth, in order to optimize the worst situation, interval is optimized and the optimality of 

same is calculated through below equation 

Qopt(wx, Vl) = √(Imax(Rl)−1 (referload(wx))
 
. (vm (τ(Vl)))

−1

 ) − 1  

(8) 

Moreover, in order to tolerate the fault, error probability is formulated which further defines the 

task reliability. 

ξ(wx, Vl, I) = I! (f −ιl.ET𝕪(wx,Vl)(λ𝕜. ET𝕪(wx, Vl)
G))

−1

 
(9) 

Meanwhile task reliability is defined as the probable state where tasks are executed even there is 

failure; thus, the chances of being executed in successful manner is ξsucced(I, Vl ) = f −ιl.ET𝕪(wx,Vl). 

Thus, reliability with consideration of task set is formulated as: 
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R(wx, Vl) = ∑ Pr(wx, Vl, Imax)

Imax

I=0

. ξsucced(I, Vl ) 

(10 ) 

 

3.4 Reliability Requirement 

In general, two distinctive types of system failure i.e., permanent failure and transient failure; 

moreover, this study considers the second type of failure; thus, we design the reliability with 

respect to an event in given time u. 

ς(u) = e−υv (11) 

In the above equation υ i.e., nu indicates the frequent failure in a given unit time; υl is used to 

indicate the constant failure of given VM; further reliability of oj in given time on υl is formulated 

as: 

S(oj, υl ) =  e−υlxhl (12) 

further, failure occurrence without using ODS-FTC is given as: 

1 − S(oj, υl ) = 1 − e−υlxhl (13) 

Furthermore, considering that each task possesses certain number of duplicates, thus we define 

numh(numh ≤  ⌊T⌋) as Oh. Further, we define duplicate set oh is given as;〈oh
1 , oh

2   , … . , oh
numh〉 

where oh
1  is absolute whereas other are duplicates; total number of duplicates for designed 

workflow is: 

numdup(H) = ∑ numj

|O|

h=1

 

(14) 

once oh duplication is completed, it is observed that there is no failure occurrence and reliability 

is updated as: 

S(oh) = 1 − ∑ (1 − S (oh
y

, vpr(oh
y

)))

numh

y=1

 

(15) 

 In the above equation, vpr(oh
y

) indicates oh
y
 

S(H) = ∑ S(oh)

 

ohϵO

 
(16) 

 

3.5 Cost Modelling of ODS-FTC 

State of efficient fault tolerance is reducing the cost execution with the reliability which can be 

defined as: considering the designed workflow with provided VM set discussed earlier in same 

section; the problem is to assign the duplicates along with their VM for each individual task. 
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Meanwhile execution cost is reduced and assurance of fault tolerance through designed reliability 

requirement in above section. Thus, optimal assignment of duplicates (also known as backups) 

along with VM assignment is given as:  

cost(h) = ∑ cost(oj)

 

ojϵO

 

Subject to reliability requirement  

S(H) = ∑ (S(oh) is less than or equivalent to Srq) 
ojϵO   

(17) 

  

3.6 Reliability Requirement for individual task 

We formulate and satisfy the reliability requirement of individual tasks; at first, we compute the 

individual task reliability requirement considering the absolute reliability obtained through the 

earlier allocations in below equations.  

Srq(osq(i)) = √Srq(H) (∑ S(osq(y))

i−1

y=1

)

−1
1−i+⌊O⌋

 

(18) 

in above equations, osq(i) indicates the given ith tasks; further we optimize the reliability 

requirements through given points. 

while computing the reliability requirements for individual task, we consider √Srq(H)
⌊O⌋

 is in the 

upper bound on the reliability requirements for task Oh and it is given by  

SURQ(Oh) = √Srq(H)
⌊O⌋

 
(19) 

Furthermore, it is assuming that the task assigned is osq(i) for task I then the task set is given as 

the unassigned task [osq(1), osq(2), … . . , osq(i−1)   ] and assigned task 

[osq(1), osq(2), … . . , osq(i−1)   ]. Further, ODS-FTC model assumes that each task in the workflow 

model is assigned with VM along with reliability parameter value formulated in above equation 

that provides the reliability assurance. Hence, the reliability requirement as whole is computed as; 

Srq(H) = ∑  (S(osq(i))) (S(osq(y))) ( ∑ SURQosq(z)

[O]

z=i+1

)

i−1

y=1

 

(20) 

Also for individual task it can be computed as equation below; moreover, to satisfy the reliability 

iterative approach is used to choose duplicate and Vm that has minimum makespan.  

Srq(osq(i)) =  (Srq(H)) (∑  (S(osq(i))) (S(oseq(y))) ( ∑ SURQosq(z)

[O]

z=i+1

)

i−1

y=1

)

−1

 

(21) 
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Further, we design an algorithm which reduces the cost and provides the efficient fault tolerance 

towards the workflow 

3.7 ODC-FTC Algorithm 

The main intention of algorithm is to offload the reliability requirement on sub division 

considering each and every individual task; further proposed algorithm i.e., ODS-FTC minimizes 

the execution cost through selecting the duplicates and optimal VM; here optimal VM are the one 

that has efficient execution time; however, there is still some redundancy was observed; also, it 

was observed that few of the duplicates can be discarded. 

Table 1 ODS-FTC algorithm  

Step1: Start 

Step2: Input as DAG information such as nodes set, execution time, communication time, 

VM set reliability requirement. 

Output: Reliability value, cost, schedule length 

Step3: Task ordering through in descending order 

Step4: for(k = 1; k ≤ |O|; k + +)do 

compute Srq(Osq(k)) 

Αsq(k) = 0 

Sosq(k) = 0 

Step5: Define a backup list dup(osq(k)) and store it in osq(k) 

Step6: for (l = 1; l ≤ |V|; l + +)do 

ComputeSrq(osq(k), vl) for osq(k) 

Compute opt_finish_time 

end for 

 

Step7: while (S (osq(k)is less than Srq (osq(k))))  do 

choose replica osq(k)
y

 and VM vpr(osq(k)
y

) with optimal execution time 

xseq(k),pr(osg(j)
x ; numsq(k) + +; 

Step8: Place oseq(k)
y

 to the dup_list in descending order; further discard the earlier allocations 

numsq(j) = 0 

S(osq(k)) = 0 

 

Step9: while S(osq(k)) is less than Srq(oseq(k)) do 

choose duplicate osq(k)
y

  and vpr(osq(k)
y

) in given list; also discard duplicate oseq(k)
y

  

from given list and increment numseq(k) 
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Step7: compute finishtime (osq(k)
y

) = opt_finish_time(nsg(j)
x , upr(nsg(j)

x ) ) 

Step8: compute S(osq(k)) 

end while (step6) 

Step9: end for 

Step10: compute makespan, cost, reliability 

In ODS-FTC algorithm schedules the task in an order; optimal order is computed through below 

equation where wi is the execution time for task oh.  

ηv(oh) = xh +  {dh,i + ηv(nj) }
oh ∈scc(oh)

max
 (22) 

Further, ODS-FTC choose the duplicates with optimal VM and these VMs are reserved and sorted 

in optimal order. Once, optimal VMs are sorted, ODS-FTC clears the earlier allocations and further 

assignment of duplicates are carried out. ODS-FTC chooses only VM that has higher order of 

reliability and further duplicates, execution cost and optimal makes pan are computed. 

4 Performance Evaluation 

Cloud Computing resources has emerged as one of the efficient computing models in the real time 

for vibrant uses, accessible, cost effective and can be accessed from anywhere through internet. 

Moreover, it can be applied to various application, one of the applications is workflow scheduling 

of scientific workflows where the tasks are dependent and independent, also possesses various 

merits and demerits. This section presents the simulation results of the proposed algorithms and 

their detailed comparisons; Simulation methods are now commonly used to test novel scheduling 

algorithms for workflow scheduling problems. It enables researchers to evaluate the performance 

of their proposed algorithms under a controlled setting and repeatable manner. For this purpose, 

here the simulations are conducted using Java coding environment on an Intel(R) Core (TM) i5-

8300H CPU with 2.30 GHz and 8GB RAM running on Windows 10. 

To evaluate our proposed algorithms with a realistic workload, we consider five scientific 

workflow applications with different data and computational characteristics: Montage (I/O 

intensive), Cyber Shake (data intensive), Epigenomics (CPU intensive), LIGO (memory 

intensive), and SIPHT (CPU intensive). Each of these workflows has different structure as shown 

in Fig. 2 and we can see that they are different combinations of the basic structural components 

(pipeline, data distribution, data aggregation, and data redistribution).  

4.1 Instance Design 

In order to evaluate the model, we have designed four distinctive instances; each instances 

comprises certain number of VM and workflow variant; Instance based comparison helps in 

performance evaluation in a random way. Moreover, four workflows are considered i.e., cyber 

shake, Inspiral, Montage and SIPHT; in case of cyber shake workflow, first instance is design 

considering the workflow variant of cybershake_30 and 20 virtual machine, second and third 

instance comprises cysber shake 50 with 40 virtual machine and cyber shake 100 with 60 virtual 

machines respectively. Moreover, fourth instance comprises 80 virtual machine and 
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cybershake_1000. Similarly, for Inspiral_30, Inspiral_50, Inspiral _100 and Inspiral _1000, 

number of virtual machines is 20, 40, 60 and 80 for four distinctive instances respectively. 

Furthermore, in case montage and SIPHT, number of virtual machines remains same with varying 

in workflow variant.  

4.2 Workflow Cost comparison 

After designing the Instance, comparison for each instance is carried with respect to the execution 

cost;  

4.2.1 Cyber shake  

Cyber Shake is an earthquake science application used to characterize earthquake hazards through 

combining large datasets and has large requirements for memory and CPU. 

 

Figure 2 cyber shake 

figure 2 shows the comparison of four instance considering the cyber shake workflow; In case of 

first instance execution cost for existing model is 19332.71 whereas proposed model execution 

cost is 18418.71. Similarly, in case of second and third instance execution cost of existing model 

is 21451.33 and 26222.62 whereas execution cost of ODS-FTC is 20038.49 and 23877.95 

respectively. In case of fourth instance existing model cost is 177836.21 whereas proposed model 

cost is 153904.64.  
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Figure 3 execution cost comparison for cyber shake work 

4.2.2 LIGO workflow 

LIGO workflow is used to generate and analyze gravitational waveforms from data collected 

during the coalescing of compact binary systems;  

 

Figure 4 LIGO 

figure 3 shows the execution cost comparison of existing and ODS-FTC. In case of first instances, 

cost of existing model is 19957.79 whereas cost of ODS-FTC is 13340.13. Similarly, in case of 

second and third instance 35468.35 and 63426.63 whereas ODS-FTC execution cost is 23705.17 

and 42400.89 respectively. Furthermore, for fourth instance, existing model execution cost is 

6886731.17 whereas ODS-FTC execution cost is 459009.39.  
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Figure 5 execution cost comparison for Inspiral work 

4.2.3 Montage workflow 

Montage workflow is used in astronomy with the aim of constructing the desired mosaic of the 

sky on the basis of input images. Most of its tasks perform frequent I/O operations and need less 

CPU capacity. 

 

Figure 6 Montage workflow 
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4.2.4 Cost comparison 

 Figure 4 shows the execution cost comparison of existing and proposed ODS-FTC considering 

the four instances; in case of first and second instance, execution cost is 736.37 and 1628.23 

whereas cost execution of ODS-FTC is 508.31 and 1118.82 respectively. Similarly, for third and 

fourth instance, execution cost of existing model is 3430.49 and 36032.25 in comparison with the 

proposed model cost with 2349.4 and 24636.46 respectively. 

 

Figure 7 montage cost comparison 

4.2.5 Makes pan comparison 

Figure 3 shows the makes pan comparison in all four instances; In general, makes pan is defined 

as the complete time required to complete the task from start to end. In case of first instance, 

existing model makes pan is 58.72 whereas ODS-FTC takes 48.67; in case of second instance, 

existing model takes 97.84 whereas proposed model takes 82.13. Similarly in case of third and 

fourth instance existing model makes pan is 125.93 and 100.84 respectively whereas ODS-FTC 

makes pan is 299.84 and 1679.35 respectively.  
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Figure 8makespan comparison 

4.2.6 SIPHT workflow 

SIPHT workflow is used for automating the search of sRNA encoding-genes for bacterial replicons 

from bioinformatics. 

 

Figure 9 SIPHT  

In case of first and second instance execution cost of existing model is 16668.77 and 35056.42 in 

comparison with the execution cost of ODS-FTC is 11121.29 and 23386.35 respectively. 

Similarly, in case of third and fourth instance execution cost of existing model is 52215.16 and 

5216668.61 in comparison with the proposed model i.e., 34833.32 and 347999.82 respectively.  
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Figure 10 Cost Comparison of existing and proposed model. 

4.3 Comparative analysis 

Table 2 shows the improvisation of ODS-FTC considering cyber shake workflow; in case of first 

instance, second instance, third instance and fourth instance, ODS-FTC observes 4.72%, 6.58%, 

8.94% and 13.45% respectively.  

Table 2  cost improvisation over the existing model for cyber shake workflow 

Instances Improvisation 

Instasnce1 4.72% 

Instance2 6.58% 

Instance3 8.94% 

Instance4 13.45% 

Table 3 shows the improvisation of ODS-FTC considering the LIGO workflow; in case of all four 

instance, ODS-FTC achieves 33.15%, 33.16%, 33.14% and 93.33% respectively. 

Table 3 cost improvisation over the existing model for LIGO workflow 

Instances Improvisation 

Instasnce1 33.15% 

Instance2 33.16% 

Instance3 33.14% 

Instance4 93.33% 
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Table 4 shows the improvisation of ODS-FTC over the existing model considering the montage 

workflow; in case of all four instances, ODS-FTC observes the improvisation of 30.97%, 31.28%, 

31.51% and 31.62% respectively.  

Table 4 cost improvisation over the existing model for LIGO workflow 

Instances improvisation 

Instasnce1 30.97% 

Instance2 31.28% 

Instance3 31.51% 

Instance4 31.62% 

Table 5 shows the improvisation of ODS-FTC over the existing model considering the montage 

workflow with respect to makes pan; in case of all four instances, ODS-FTC observes the 

improvisation of 17.11%, 16.05%, 19.92% and 20.76% respectively 

Table 5 makes pan Improvisation over the existing model for montage workflow 

Instances improvisation 

Instasnce1 17.11% 

Instance2 16.05% 

Instance3 19.92% 

Instance4 20.76% 

Table 6shows the improvisation of ODS-FTC over the existing model considering the SIPHT 

workflow; in case of all four instances, ODS-FTC observes the improvisation of 33.28% for three 

instances and 93.32% for fourth instances 

Table 6 cost improvisation over the existing model for LIGO workflow 

Instances improvisation 

Instasnce1 33.28% 

Instance2 33.28% 

Instance3 33.28% 

Instance4 93.32% 

Moreover, through the above comparative analysis it is observed that ODS-FTC possesses 

marginal improvisation over the existing model not only in terms of cost but also makespan.  

Conclusion 

Increase in cloud computing popularity along with its universal acceptance has led to be applicable 

in implementation in large scale application; moreover, in such cases cloud environment is chosen 

by scientific association for smooth execution of designed workflows. Despite of being so 

dynamic, cloud computing possesses higher number of failure rate; failure can occur due to 

different reason; these failure results in unavailability of virtual machine to process the work. This 
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issue can be solved through designing the fault tolerance approach. Hence in this research work, a 

mechanism ODS-FTC (optimal duplication strategy for fault tolerance cost drive) is developed 

that aims at enhancing the reliability and execution cost. ODS-FTC uses the duplication strategy 

where ODS-FTC uses the iterative approach for selection of VM and available duplicates that has 

minimum redundancy; moreover, ODS-FTC not only minimizes the cost but also minimizes the 

makes pan. Furthermore, in order to evaluate the ODS-FTC model, four random instances were 

designed each instance contains the workflow variant and certain number of virtual machines; 

moreover, average instances with respect to cost shows the improvisation of 8.42%, 48.19%, 

31.34% and 48.29% improvisation for cyber shake, Ligo, Montage and SIPHT workflow in 

respective manner; also, it is to be noted that in case of montage workflow an average of 18.46 % 

of improvisation is observed by ODS-FTC.  

Although, ODS-FTC proved to be efficient fault tolerance with the cost optimization than the other 

mechanism for different scientific workflow, it has to be noted that it can vary from one workflow 

to other workflow depending on the workload and task complexity; thus, further research could be 

considering the varying the workflow model and complexities. 
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