
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1955 http://www.webology.org

Efficient Fault Tolerant Cost Driven Mechanism For Scientific

Workflow Through Optimal Replication Strategy In Cloud

Computing Environment

Asma Anjum1 , Dr. Asma Parveen2

1Department of Computer Science and Engineering, Khaja Banda Nawaz College of

Engineering, Kalaburagi, India.

2Department of Computer Science and Engineering, Khaja Banda Nawaz College of

Engineering, Kalaburagi, India.

Abstract

Cloud Computing has been one of the distributed and effective computing paradigms; it provides

enormous opportunities to tackle the scientific problems that possesses large scale attribute.

Despite of being such a flexible computing paradigm, it possesses several challenges and fails to

achieve the required QoS. Reliability requirement is one of the most important quality of services

(QoS) and should be satisfied for a reliable workflow in cloud computing. Primary-backup

replication is an important software fault-tolerant technique used to satisfy reliability requirement.

Recent works studied quantitative fault-tolerant scheduling to reduce execution cost by minimizing

the number of replicas while satisfying the reliability requirement of a workflow on heterogeneous

infrastructure as a service (IaaS) cloud. However, a minimum number of replicas does not

necessarily lead to the minimum execution cost and shortest schedule length in a heterogeneous

IaaS cloud. In this research work, we develop a ODS (Optimal duplication strategy) for fault

tolerance and cost driven mechanism also named as ODS-FTC; ODS-FTC uses the iterative based

approach that selects VM and its duplicates that has minimum makes pan in case of individual

task. Moreover, this provides the utility against failure occurrence and optimal selection with

optimal redundancy causes the cost to be optimal. ODS-FTC is evaluated considering the scientific

workflow like cyber shake, LIGO, montage and SIPHT; evaluation is carried out through

designing instances. Furthermore, in case of all instances, ODS-FTC is proved to be marginally

improvised than the existing model.

Keywords: Fault Tolerance, Reliability Requirement, Cost optimization, makes pan, efficient

scheduling,

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1956 http://www.webology.org

1 Introduction

Cloud Computing services are considered as primary effective commercial service model for

computation that provides the computing platform as well as computing resources to its users;

moreover, users can opt for “pay as you go”. Moreover, this virtual computing model provides the

flexibility for users to present the requirement of QoS to providers [1]- [5]. Moreover, recent

development in cloud computing have caused the extensive development in workflows application

in various fields such as astrophysics, astronomy and bioinformatics in order to analyze these

applications considering the CC (Cloud Computing) platforms. Further, characteristics of CC-

model includes the dynamic resource allocation, storage resources; moreover, these characteristics

can be exploited through efficient scheduling which solves the specific problems discussed later

in same section to improvise the system performance [6]- [9]. Workflow scheduling is designed to

optimize the heterogeneous cloud model; in here users focus on the QoS satisfaction which

includes the cost execution, deadline while submitting the workflow applications. Furthermore,

increase in demand for computation and services in scientific workflow application possesses

problem of energy consumption, deadline constraint, makes pan optimization and cost

minimization. thus, workflows are modelled through DAG (Direct Acyclic Graph); DAG is a

workflow modelling where node is task and edge is the interlink among the task [10]-[12].

Figure 1 typical DAG model

Epigenomics workflow is a highly pipelined biology application which maps the epigenetic state

of human cells. Most of its tasks have high CPU and low I/O utilization. LIGO workflow is used

in the physics field to detect gravitational waves and has many CPU intensive tasks that consume

large memory. [33]. We can synthesize workflows with different numbers of tasks using the

generator provided by Pegasus project [34] and these workflows are available in the format of

DAX (Directed Acyclic graph in XML). Execution time of the tasks in DAX files is based on a

quad core, 2.4 GHz Intel Core 2 processor whose processing capacity is approximately equal to 8

ECUs (2.33 × 4/1.2 ≈ 8). For each of these workflows, we consider three sizes: Small (about 50

tasks), Medium (about 200 tasks) and Large (about 1000 tasks). Moreover, for each size 20

different instances are generated with the same structure but with different communication and

computation workload. In general energy aware scheduling is developed by researchers which

focuses on the green computing and tries to minimize the cost; most probably DVFS is used as the

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1957 http://www.webology.org

mechanism to reduce the energy. However, energy aware mechanism only focusses on the energy

minimization and ignores fault tolerance and cost. Scientific workflows require huge number of

resources to process the big data on clouds; furthermore, real time cloud services demand various

Computation capacities which causes the increase in transient failure. Further, increase in

complexities and failures puts an adverse effect on the resource management which results in QoS

issue, especially reliability requirement [13]- [15]. Fault tolerance scheduling mechanism is one

of the effective mechanisms to improvise the workflow reliability and further backup is used for

satisfying the reliability requirement. Existing fault tolerance model which has been discussed in

the next section uses one backup in case of failure; although as a novel concept it was interesting

earlier but due to complex scientific workflows it fails model fails to tolerate more than one failure.

Thus, it is necessary to design and develop a fault tolerance model that can tolerate multiple failure

and enhance the reliability requirement; also cost optimization is one of the essential as optimal

cost indicates the model efficiency [16] [17].

1.1 Motivation and contribution of research work

Fault-tolerant scheduling is an effective method to enhance the reliability of a workflow, and

primary-backup replication is an important software fault-tolerant technique used to satisfy the

reliability requirement. Existing fault tolerant scheduling algorithms either use one backup for

each primary to tolerate one failure based on the passive replication scheme [18], [19], [20], which

cannot tolerate potential multiple failures, or use fixed ε backups for each primary to tolerate ε

failures in the same time based on active replication scheme, which can satisfy the reliability

requirement, but can cause high redundancy and cost. Further, contribution of research work is

highlighted through below points.

1. We design and develop a fault tolerance and efficient mechanism which satisfy the

reliability requirements; moreover, proposed mechanism is named ODS-FTC (optimal

duplication strategy with fault tolerance and cost optimization).

2. ODS-FTC uses the iterative approach for selection of VM and available duplicates that has

minimum redundancy.

3. ODS-FTC is evaluated considering the cost parameter; In general, as the VM fails it

requires more resources to cope up the failure and thus there is certain spike in cost.

4. Furthermore, scientific workflow is considered to prove the model efficiency; in order to

evaluate four instances are designed that includes the certain number of VM.

5. comparative analysis is carried out and proposed methodology proves to be efficient than

the existing model.

This research is organized in particular way as first section starts with background of computation

and need of cloud computing phenomena; further we discuss the necessity of scheduling

mechanism and end the section by motivation and contribution of research work. Second section

focuses on the reviewing the various existing protocol and their shortcoming; further in third

section ODS-FTC along with its mathematical formulation is designed. ODS-FTC is evaluated in

fourth section by considering the various instance.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1958 http://www.webology.org

2 Related Work

Scientific workflow scheduling along with the optimization is considered as one of the essential

research topic in cloud computing and further several aspects have been explored such as varying

the number of workload, workflows; different platforms, different scheduling mechanism.

Furthermore, in case of all the optimization objectives remains make span, energy consumption,

cost, reliability or multi-objective; hence this section focuses on different related work in

accordance with the fault tolerance along with the cost optimization. In [18], an online scheduling

algorithm was developed to make robust mechanism against the missing information; in here, it

was observed that in case of potential resource failure, workflow scheduling is more complicated.

Further, a failure aware mechanism was proposed through Markov chain based prediction model

of resource availability in [19]; however, the model was highly dependent, another dependent

model was developed in [20] where replication strategy was adopted and additional schema was

adopted in case of further failures, this results in high performance penalties, thus in [21], work

queue with replication aka WQR was introduced considering that resource provisioning in cloud

is elastic .In general fault tolerance is achieved through two distinctive approach i.e. passive

replication [22] and active replication [23]; moreover, fault tolerance strategy can also be

addressed as the improvisation in reliability which further minimizes the cost [24]- [27]. Passive

replication refers to the backup replica which will be executed considering the VM whenever there

is failure of primary one; however, it is quite difficult to adopt the passive replication through only

backup [28] [29]; also, passive replication adoption costs are higher and the replication process

leads the unpredictable redundancy. In case of active replication, primary one is replicated number

of times in given each VM, where the task can be executed successfully. In [23], Max Re algorithm

were presented for reliability requirement which produce the cost as well as redundancy; in here

reliability requirements of entire task are similar and the requirement of each task is

mathematically to n square root of defined reliability requirement where n is considered as the

workflow. In [24], optimal resources mechanism is developed for assurance of reliability

requirement for minimizing the reliability requirements which was compared with the previous

mechanism; however, it possesses high cost to minimize the reliability requirement and

redundancy. Similarly, [24] introduced ERRM approach which performs the iterative based

approach for further implementation of quantitative based replication; this model does possess

low-cost redundancy minimization for smaller workflows; however, fails miserably when used in

large workflows this makes it as poor efficiency model.

The proactive fault-tolerance methods are applied in fault prediction as to replace the potential

sections that would encounter fault, thus preventing fault event. [30] introduced a fuzzy task

distribution method where by correct load distribution, the user task requests among available

resources assure fault-tolerance by applying fault detection and discrepancies, which in turn reduce

fault events in the system. Their experimental results indicate their method, when compared to

other load balance algorithms, although the evolutionary and multi objective algorithms and

energy utilization are not addressed, but it reduces fault event in a significant manner. [31]

modified NSGA-III algorithm where intelligent fault tolerance technique is added on to increase

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1959 http://www.webology.org

system utilization. Moreover, the multiagent devices applied in their approach are highly

contributive in many engineering aspects like service provision transportation, intelligent

networks, cloud computing and complicated parallel computational devices. Therefore, their

proposed intelligent system provides relatively stable assessment without evaluating fault

distribution upon transient fault events. The hybrid fault-tolerance methods are a hybrid of reactive

fault tolerant and proactive fault tolerant methods. [32] introduced a hybrid method for network

fault tolerant and hardware fault tolerant where the square matrix multiplication concept is applied.

Because in cloud computing data storage in a network takes place in remote sense, most faults

occur due to system failure and network congestion. In their method, the servers’ health is assessed

through a health monitor, which predicts fault events and applies a migration technique to reduce

data loss while no discussion is run on evolutionary and multi-objective algorithms and prediction

through neural network.

3 Proposed Methodology

In general, cloud computing possesses high failure rates due to the existence of huge number of

components and servers that are filled with workloads; moreover, these failures may lead to the

constraint in VM availability; however, this issue is solved through the optimal fault tolerance

strategy. Hence this section of the research presents the mathematical modelling of proposed

methodology ODS-FTC which aims at providing the optimal reliability requirement and minimize

the cost further. ODS-FTC comprises various sub section which are discussed below.

3.1 Preliminaries

Let’s consider a particular set of Virtual Machine configuration denoted through variable F where

F = {F0, F1 … . . , Fm }; moreover, this configuration comprises different parameter such as cost,

memory, total number of VM and memory. Furthermore, considering the VM set, VM instance

can be designed through the variable named V which is given as V = {V0, V1, … … , Vh } where Vh

directly implicates the instances of VM with configurations; also, it is to be noted that ODS-FTC

is designed for the parallel processing-based machine.

3.2 Workflow modelling

Let’s consider a scientific workflow model with variable Z, which is further elaborated asZ =

(W, F) where both semi variables indicate the task set and dependencies; dependencies are

commonly observed in the complicated, scientific and large workflow model. Furthermore, we

initialize few additional parameters that are associated with the task are α(vx), β(vx), γ(vx) and

δ(vx); for instance, if the task from v are performed with respect to the resources w, then workflow

cost model can be mathematically computed through below equation.

ℶ(vx , vy) = {

ed_wt𝕨𝕩

band𝕜,𝕝
 if Vl is not equal to Vm

0 if Vl is equal to Vm

(1)

Also bandwidth resources can be designed as

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1960 http://www.webology.org

ℵl,m = opt(ℵ(ρ(Vl)), ℵ(ρ(Vm))) (2)

3.3 Modelling of task with respect to the fault tolerance

Let’s assume that individual task in task set is given same interval to perform the execution and

the interval parameter of task can be mathematically designed as below equation; where np is

considered as the ideal fault tolerance level along with the frequency of operation denoted as ip

Rp = [√(((np Fp)(Ftip)
−1

) − 1)]
(3)

The above equation makes the situation ideal where there is no occurrence of failure; which can

be given as

τn = Fp + Rp × fv × ip (4)

Further, we assume that task wx assigned to resource Vl and considering the above ideal situation,

ideal execution can be formulated as below equation where Q(wx, Vl) implicating the total number

of tasks along with Ql as overhead.

ωbest(wx, Vl) = (τ(wx)) (vn((Vl)))−1 + Q(wx, Vl). Ql (5)

Meanwhile, we compute the length of interval

ε(wx, Vl) = vm(τ(Vl)) (τ(wx))
−1

. (Q(wx, Vl) + 1)−1 (6)

Once the ideal case is designed, it is also important to formulate the worst situation where there is

highest error occurrence with task and virtual machine defined earlier; further Q(wx, Vl)implicates

the total overhead and fault tolerance overhead is given through ε(wx, Vl)

ET𝕪(wx, Vl) = ((wx))
−1

. (vm (τ(Vl)))
−1

+ seg(wx, Vl). Imax + 2. P(wx, Vl). Ql
(7)

Henceforth, in order to optimize the worst situation, interval is optimized and the optimality of

same is calculated through below equation

Qopt(wx, Vl) = √(Imax(Rl)−1 (referload(wx))

. (vm (τ(Vl)))

−1

) − 1

(8)

Moreover, in order to tolerate the fault, error probability is formulated which further defines the

task reliability.

ξ(wx, Vl, I) = I! (f −ιl.ET𝕪(wx,Vl)(λ𝕜. ET𝕪(wx, Vl)
G))

−1

(9)

Meanwhile task reliability is defined as the probable state where tasks are executed even there is

failure; thus, the chances of being executed in successful manner is ξsucced(I, Vl) = f −ιl.ET𝕪(wx,Vl).

Thus, reliability with consideration of task set is formulated as:

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1961 http://www.webology.org

R(wx, Vl) = ∑ Pr(wx, Vl, Imax)

Imax

I=0

. ξsucced(I, Vl)

(10)

3.4 Reliability Requirement

In general, two distinctive types of system failure i.e., permanent failure and transient failure;

moreover, this study considers the second type of failure; thus, we design the reliability with

respect to an event in given time u.

ς(u) = e−υv (11)

In the above equation υ i.e., nu indicates the frequent failure in a given unit time; υl is used to

indicate the constant failure of given VM; further reliability of oj in given time on υl is formulated

as:

S(oj, υl) = e−υlxhl (12)

further, failure occurrence without using ODS-FTC is given as:

1 − S(oj, υl) = 1 − e−υlxhl (13)

Furthermore, considering that each task possesses certain number of duplicates, thus we define

numh(numh ≤ ⌊T⌋) as Oh. Further, we define duplicate set oh is given as;〈oh
1 , oh

2 , … . , oh
numh〉

where oh
1 is absolute whereas other are duplicates; total number of duplicates for designed

workflow is:

numdup(H) = ∑ numj

|O|

h=1

(14)

once oh duplication is completed, it is observed that there is no failure occurrence and reliability

is updated as:

S(oh) = 1 − ∑ (1 − S (oh
y

, vpr(oh
y

)))

numh

y=1

(15)

 In the above equation, vpr(oh
y

) indicates oh
y

S(H) = ∑ S(oh)

ohϵO

(16)

3.5 Cost Modelling of ODS-FTC

State of efficient fault tolerance is reducing the cost execution with the reliability which can be

defined as: considering the designed workflow with provided VM set discussed earlier in same

section; the problem is to assign the duplicates along with their VM for each individual task.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1962 http://www.webology.org

Meanwhile execution cost is reduced and assurance of fault tolerance through designed reliability

requirement in above section. Thus, optimal assignment of duplicates (also known as backups)

along with VM assignment is given as:

cost(h) = ∑ cost(oj)

ojϵO

Subject to reliability requirement

S(H) = ∑ (S(oh) is less than or equivalent to Srq)
ojϵO

(17)

3.6 Reliability Requirement for individual task

We formulate and satisfy the reliability requirement of individual tasks; at first, we compute the

individual task reliability requirement considering the absolute reliability obtained through the

earlier allocations in below equations.

Srq(osq(i)) = √Srq(H) (∑ S(osq(y))

i−1

y=1

)

−1
1−i+⌊O⌋

(18)

in above equations, osq(i) indicates the given ith tasks; further we optimize the reliability

requirements through given points.

while computing the reliability requirements for individual task, we consider √Srq(H)
⌊O⌋

 is in the

upper bound on the reliability requirements for task Oh and it is given by

SURQ(Oh) = √Srq(H)
⌊O⌋

(19)

Furthermore, it is assuming that the task assigned is osq(i) for task I then the task set is given as

the unassigned task [osq(1), osq(2), … . . , osq(i−1)] and assigned task

[osq(1), osq(2), … . . , osq(i−1)]. Further, ODS-FTC model assumes that each task in the workflow

model is assigned with VM along with reliability parameter value formulated in above equation

that provides the reliability assurance. Hence, the reliability requirement as whole is computed as;

Srq(H) = ∑ (S(osq(i))) (S(osq(y))) (∑ SURQosq(z)

[O]

z=i+1

)

i−1

y=1

(20)

Also for individual task it can be computed as equation below; moreover, to satisfy the reliability

iterative approach is used to choose duplicate and Vm that has minimum makespan.

Srq(osq(i)) = (Srq(H)) (∑ (S(osq(i))) (S(oseq(y))) (∑ SURQosq(z)

[O]

z=i+1

)

i−1

y=1

)

−1

(21)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1963 http://www.webology.org

Further, we design an algorithm which reduces the cost and provides the efficient fault tolerance

towards the workflow

3.7 ODC-FTC Algorithm

The main intention of algorithm is to offload the reliability requirement on sub division

considering each and every individual task; further proposed algorithm i.e., ODS-FTC minimizes

the execution cost through selecting the duplicates and optimal VM; here optimal VM are the one

that has efficient execution time; however, there is still some redundancy was observed; also, it

was observed that few of the duplicates can be discarded.

Table 1 ODS-FTC algorithm

Step1: Start

Step2: Input as DAG information such as nodes set, execution time, communication time,

VM set reliability requirement.

Output: Reliability value, cost, schedule length

Step3: Task ordering through in descending order

Step4: for(k = 1; k ≤ |O|; k + +)do

compute Srq(Osq(k))

Αsq(k) = 0

Sosq(k) = 0

Step5: Define a backup list dup(osq(k)) and store it in osq(k)

Step6: for (l = 1; l ≤ |V|; l + +)do

ComputeSrq(osq(k), vl) for osq(k)

Compute opt_finish_time

end for

Step7: while (S (osq(k)is less than Srq (osq(k)))) do

choose replica osq(k)
y

 and VM vpr(osq(k)
y

) with optimal execution time

xseq(k),pr(osg(j)
x ; numsq(k) + +;

Step8: Place oseq(k)
y

 to the dup_list in descending order; further discard the earlier allocations

numsq(j) = 0

S(osq(k)) = 0

Step9: while S(osq(k)) is less than Srq(oseq(k)) do

choose duplicate osq(k)
y

 and vpr(osq(k)
y

) in given list; also discard duplicate oseq(k)
y

from given list and increment numseq(k)

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1964 http://www.webology.org

Step7: compute finishtime (osq(k)
y

) = opt_finish_time(nsg(j)
x , upr(nsg(j)

x))

Step8: compute S(osq(k))

end while (step6)

Step9: end for

Step10: compute makespan, cost, reliability

In ODS-FTC algorithm schedules the task in an order; optimal order is computed through below

equation where wi is the execution time for task oh.

ηv(oh) = xh + {dh,i + ηv(nj) }
oh ∈scc(oh)

max
 (22)

Further, ODS-FTC choose the duplicates with optimal VM and these VMs are reserved and sorted

in optimal order. Once, optimal VMs are sorted, ODS-FTC clears the earlier allocations and further

assignment of duplicates are carried out. ODS-FTC chooses only VM that has higher order of

reliability and further duplicates, execution cost and optimal makes pan are computed.

4 Performance Evaluation

Cloud Computing resources has emerged as one of the efficient computing models in the real time

for vibrant uses, accessible, cost effective and can be accessed from anywhere through internet.

Moreover, it can be applied to various application, one of the applications is workflow scheduling

of scientific workflows where the tasks are dependent and independent, also possesses various

merits and demerits. This section presents the simulation results of the proposed algorithms and

their detailed comparisons; Simulation methods are now commonly used to test novel scheduling

algorithms for workflow scheduling problems. It enables researchers to evaluate the performance

of their proposed algorithms under a controlled setting and repeatable manner. For this purpose,

here the simulations are conducted using Java coding environment on an Intel(R) Core (TM) i5-

8300H CPU with 2.30 GHz and 8GB RAM running on Windows 10.

To evaluate our proposed algorithms with a realistic workload, we consider five scientific

workflow applications with different data and computational characteristics: Montage (I/O

intensive), Cyber Shake (data intensive), Epigenomics (CPU intensive), LIGO (memory

intensive), and SIPHT (CPU intensive). Each of these workflows has different structure as shown

in Fig. 2 and we can see that they are different combinations of the basic structural components

(pipeline, data distribution, data aggregation, and data redistribution).

4.1 Instance Design

In order to evaluate the model, we have designed four distinctive instances; each instances

comprises certain number of VM and workflow variant; Instance based comparison helps in

performance evaluation in a random way. Moreover, four workflows are considered i.e., cyber

shake, Inspiral, Montage and SIPHT; in case of cyber shake workflow, first instance is design

considering the workflow variant of cybershake_30 and 20 virtual machine, second and third

instance comprises cysber shake 50 with 40 virtual machine and cyber shake 100 with 60 virtual

machines respectively. Moreover, fourth instance comprises 80 virtual machine and

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1965 http://www.webology.org

cybershake_1000. Similarly, for Inspiral_30, Inspiral_50, Inspiral _100 and Inspiral _1000,

number of virtual machines is 20, 40, 60 and 80 for four distinctive instances respectively.

Furthermore, in case montage and SIPHT, number of virtual machines remains same with varying

in workflow variant.

4.2 Workflow Cost comparison

After designing the Instance, comparison for each instance is carried with respect to the execution

cost;

4.2.1 Cyber shake

Cyber Shake is an earthquake science application used to characterize earthquake hazards through

combining large datasets and has large requirements for memory and CPU.

Figure 2 cyber shake

figure 2 shows the comparison of four instance considering the cyber shake workflow; In case of

first instance execution cost for existing model is 19332.71 whereas proposed model execution

cost is 18418.71. Similarly, in case of second and third instance execution cost of existing model

is 21451.33 and 26222.62 whereas execution cost of ODS-FTC is 20038.49 and 23877.95

respectively. In case of fourth instance existing model cost is 177836.21 whereas proposed model

cost is 153904.64.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1966 http://www.webology.org

Figure 3 execution cost comparison for cyber shake work

4.2.2 LIGO workflow

LIGO workflow is used to generate and analyze gravitational waveforms from data collected

during the coalescing of compact binary systems;

Figure 4 LIGO

figure 3 shows the execution cost comparison of existing and ODS-FTC. In case of first instances,

cost of existing model is 19957.79 whereas cost of ODS-FTC is 13340.13. Similarly, in case of

second and third instance 35468.35 and 63426.63 whereas ODS-FTC execution cost is 23705.17

and 42400.89 respectively. Furthermore, for fourth instance, existing model execution cost is

6886731.17 whereas ODS-FTC execution cost is 459009.39.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

cybershake_30,
VM=20

cybershake_50,
VM=40

cybershake_100,
VM=60

cybershake_1000,
VM=80

C
O

ST

INSTANCE

Execution Cost

existing ODS-FTC

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1967 http://www.webology.org

Figure 5 execution cost comparison for Inspiral work

4.2.3 Montage workflow

Montage workflow is used in astronomy with the aim of constructing the desired mosaic of the

sky on the basis of input images. Most of its tasks perform frequent I/O operations and need less

CPU capacity.

Figure 6 Montage workflow

0

100000

200000

300000

400000

500000

600000

700000

Inspiral_30,
VM=20

Inspiral_50,
VM=40

Inspiral_100,
VM=60

Inspiral_1000,
VM=80

C
O

ST

INSTANCES

Execution Cost

existing ODS-FTC

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1968 http://www.webology.org

4.2.4 Cost comparison

 Figure 4 shows the execution cost comparison of existing and proposed ODS-FTC considering

the four instances; in case of first and second instance, execution cost is 736.37 and 1628.23

whereas cost execution of ODS-FTC is 508.31 and 1118.82 respectively. Similarly, for third and

fourth instance, execution cost of existing model is 3430.49 and 36032.25 in comparison with the

proposed model cost with 2349.4 and 24636.46 respectively.

Figure 7 montage cost comparison

4.2.5 Makes pan comparison

Figure 3 shows the makes pan comparison in all four instances; In general, makes pan is defined

as the complete time required to complete the task from start to end. In case of first instance,

existing model makes pan is 58.72 whereas ODS-FTC takes 48.67; in case of second instance,

existing model takes 97.84 whereas proposed model takes 82.13. Similarly in case of third and

fourth instance existing model makes pan is 125.93 and 100.84 respectively whereas ODS-FTC

makes pan is 299.84 and 1679.35 respectively.

0

5000

10000

15000

20000

25000

30000

35000

40000

Montage_25,
VM=20

Montage_50,
VM=40

Montage_100,
VM=60

Montage_1000,
VM=80

C
O

ST

INSTANCES

Execution Cost

existing ODS-FTC

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1969 http://www.webology.org

Figure 8makespan comparison

4.2.6 SIPHT workflow

SIPHT workflow is used for automating the search of sRNA encoding-genes for bacterial replicons

from bioinformatics.

Figure 9 SIPHT

In case of first and second instance execution cost of existing model is 16668.77 and 35056.42 in

comparison with the execution cost of ODS-FTC is 11121.29 and 23386.35 respectively.

Similarly, in case of third and fourth instance execution cost of existing model is 52215.16 and

5216668.61 in comparison with the proposed model i.e., 34833.32 and 347999.82 respectively.

0

200

400

600

800

1000

1200

1400

VM=20 VM=40 VM=60 VM=80

Montage_25 Montage_50 Montage_100 Montage_1000

TI
M

E
(I

N
 S

EC
)

INSTANCES

makespan

ES ODS-FTC

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1970 http://www.webology.org

Figure 10 Cost Comparison of existing and proposed model.

4.3 Comparative analysis

Table 2 shows the improvisation of ODS-FTC considering cyber shake workflow; in case of first

instance, second instance, third instance and fourth instance, ODS-FTC observes 4.72%, 6.58%,

8.94% and 13.45% respectively.

Table 2 cost improvisation over the existing model for cyber shake workflow

Instances Improvisation

Instasnce1 4.72%

Instance2 6.58%

Instance3 8.94%

Instance4 13.45%

Table 3 shows the improvisation of ODS-FTC considering the LIGO workflow; in case of all four

instance, ODS-FTC achieves 33.15%, 33.16%, 33.14% and 93.33% respectively.

Table 3 cost improvisation over the existing model for LIGO workflow

Instances Improvisation

Instasnce1 33.15%

Instance2 33.16%

Instance3 33.14%

Instance4 93.33%

0

100000

200000

300000

400000

500000

600000

Sipht_30,VM=20 Sipht_60, VM=40 Sipht_100, VM=60 Sipht_1000, VM=80

C
O

ST

INSTANCES

Execution Cost

existing ODS-FTC

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1971 http://www.webology.org

Table 4 shows the improvisation of ODS-FTC over the existing model considering the montage

workflow; in case of all four instances, ODS-FTC observes the improvisation of 30.97%, 31.28%,

31.51% and 31.62% respectively.

Table 4 cost improvisation over the existing model for LIGO workflow

Instances improvisation

Instasnce1 30.97%

Instance2 31.28%

Instance3 31.51%

Instance4 31.62%

Table 5 shows the improvisation of ODS-FTC over the existing model considering the montage

workflow with respect to makes pan; in case of all four instances, ODS-FTC observes the

improvisation of 17.11%, 16.05%, 19.92% and 20.76% respectively

Table 5 makes pan Improvisation over the existing model for montage workflow

Instances improvisation

Instasnce1 17.11%

Instance2 16.05%

Instance3 19.92%

Instance4 20.76%

Table 6shows the improvisation of ODS-FTC over the existing model considering the SIPHT

workflow; in case of all four instances, ODS-FTC observes the improvisation of 33.28% for three

instances and 93.32% for fourth instances

Table 6 cost improvisation over the existing model for LIGO workflow

Instances improvisation

Instasnce1 33.28%

Instance2 33.28%

Instance3 33.28%

Instance4 93.32%

Moreover, through the above comparative analysis it is observed that ODS-FTC possesses

marginal improvisation over the existing model not only in terms of cost but also makespan.

Conclusion

Increase in cloud computing popularity along with its universal acceptance has led to be applicable

in implementation in large scale application; moreover, in such cases cloud environment is chosen

by scientific association for smooth execution of designed workflows. Despite of being so

dynamic, cloud computing possesses higher number of failure rate; failure can occur due to

different reason; these failure results in unavailability of virtual machine to process the work. This

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1972 http://www.webology.org

issue can be solved through designing the fault tolerance approach. Hence in this research work, a

mechanism ODS-FTC (optimal duplication strategy for fault tolerance cost drive) is developed

that aims at enhancing the reliability and execution cost. ODS-FTC uses the duplication strategy

where ODS-FTC uses the iterative approach for selection of VM and available duplicates that has

minimum redundancy; moreover, ODS-FTC not only minimizes the cost but also minimizes the

makes pan. Furthermore, in order to evaluate the ODS-FTC model, four random instances were

designed each instance contains the workflow variant and certain number of virtual machines;

moreover, average instances with respect to cost shows the improvisation of 8.42%, 48.19%,

31.34% and 48.29% improvisation for cyber shake, Ligo, Montage and SIPHT workflow in

respective manner; also, it is to be noted that in case of montage workflow an average of 18.46 %

of improvisation is observed by ODS-FTC.

Although, ODS-FTC proved to be efficient fault tolerance with the cost optimization than the other

mechanism for different scientific workflow, it has to be noted that it can vary from one workflow

to other workflow depending on the workload and task complexity; thus, further research could be

considering the varying the workflow model and complexities.

Reference

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, M. Zaharia, ‘‘A view of cloud computing,’’ Commun.

ACM, vol. 53, no. 4, pp. 50–58, 2010.

2. H. Chen, X. Zhu, D. Qiu, L. Liu, and Z. Du, ‘‘Scheduling for workflows with security-

sensitive intermediate data by selective tasks duplication in clouds,’’ IEEE Trans. Parallel

Distrib. Syst., vol. 28, no. 9, pp. 2674–2688, Sep. 2017.

3. M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and R. Buyya, ‘‘HPC

cloud for scientific and business applications: Taxonomy, vision, and research

challenges,’’ ACM Comput. Surv., vol. 51, no. 1, pp. 1–29, Apr. 2018.

4. G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan, ‘‘The application of

cloud computing to astronomy: A study of cost and performance,’’ in Proc. 6th IEEE Int.

Conf. e-Sci. Workshops, Dec. 2010, pp. 1–7.

5. Z. Lv and L. Qiao, ‘‘Analysis of healthcare big data,’’ Future Gener. Comput. Syst., vol.

109, pp. 103–110, Aug. 2020.

6. J. Ekanayake, T. Gunarathne, and J. Qiu, ‘‘Cloud technologies for bioinformatics

applications,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 6, pp. 998–1011, Jun. 2011.

7. Y. Liu, C. Yang, and Q. Sun, ‘‘Thresholds based image extraction schemes in big data

environment in intelligent traffic management,’’ IEEE Trans. Intell. Transp. Syst., early

access, Jun. 5, 2020, doi: 10.1109/TITS.2020. 2994386.

8. Z. Lv and W. Xiu, ‘‘Interaction of edge-cloud computing based on SDN and NFV for next

generation IoT,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 5706–5712, Jul. 2020.

9. Z. Lv and H. Song, ‘‘Mobile Internet of Things under data physical fusion technology,’’

IEEE Internet Things J., vol. 7, no. 5, pp. 4616–4624, May 2020.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1973 http://www.webology.org

10. H. Chen, J. Wen, W. Pedrycz, and G. Wu, ‘‘Big data processing workflows oriented real-

time scheduling algorithm using task-duplication in geo distributed clouds,’’ IEEE Trans.

Big Data, vol. 6, no. 1, pp. 131–144, Mar. 2020.

11. X. Zeng, S. Garg, M. Barika, A. Y. Zomaya, L. Wang, M. Villari, D. Chen, and R. Ranjan,

‘‘SLA management for big data analytical applications in clouds: A taxonomy study,’’

ACM Comput. Surv., vol. 53, no. 3, pp. 1–40, Jul. 2020.

12. Z. Li, J. Ge, H. Hu, W. Song, H. Hu and B. Luo, "Cost and Energy Aware Scheduling

Algorithm for Scientific Workflows with Deadline Constraint in Clouds," in IEEE

Transactions on Services Computing, vol. 11, no. 4, pp. 713-726, 1 July-Aug. 2018, doi:

10.1109/TSC.2015.2466545.

13. X. Tang, "Reliability-Aware Cost-Efficient Scientific Workflows Scheduling Strategy on

Multi-Cloud Systems," in IEEE Transactions on Cloud Computing, doi:

10.1109/TCC.2021.3057422.

14. Zhongjin Li, Victor Chang, Haiyang Hu, Hua Hu, Chuanyi Li, Jidong Ge, Real-time and

dynamic fault-tolerant scheduling for scientific workflows in clouds, Information Sciences,

Volume 568, 2021,Pages 13-39,ISSN 0020-0255,

https://doi.org/10.1016/j.ins.2021.03.003.

15. X. Zhu, J. Wang, H. Guo, D. Zhu, L. T. Yang, and L. Liu, ‘‘Fault-tolerant scheduling for

real-time scientific workflows with elastic resource provisioning in virtualized clouds,’’

IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3501–3517, Dec. 2016.

16. I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Y. Zomaya, ‘‘A balanced scheduler with

data reuse and replication for scientific workflows in cloud computing systems,’’ Future

Gener. Comput. Syst., vol. 74, pp. 168–178, Sep. 2017.

17. R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘Modeling and simulation of scalable cloud

computing environments and the Cloud Sim toolkit: Challenges and opportunities,’’ in

Proc. Int. Conf. High Perform. Comput. Simul., Jun. 2009, pp. 1–11.

18. Z. Ahmad, A. I. Jehangiri, M. Iftikhar, A. I. Umer, and I. Afzal, ‘‘Data oriented scheduling

with dynamic-clustering fault-tolerant technique for scientific workflows in clouds,’’

Program. Comput. Softw., vol. 45, no. 8, pp. 506–516, Dec. 2019.

19. J. Schneider, “Grid workflow scheduling based on incomplete information,” Ph.D.

dissertation, Berlin Institute of Technology, 2010.

20. Z. Yu, C. Wang, and W. Shi, “Failure-aware workflow scheduling in cluster

environments,” Cluster Computing, vol. 13, no. 4, pp. 421–434, 2010.

21. Y. Tao, H. Jin, S. Wu, X. Shi, and L. Shi, “Dependable grid workflow scheduling based

on resource availability,” Journal of Grid Computing, vol. 11, no. 1, pp. 47–61, 2013.

22. M. Tao, S. Dong, and K. He, “A new replication scheduling strategy for grid workflow

applications,” in Proceedings of 6th Annual Conf. Chinagrid. IEEE, 2011, pp. 74–80.

23. Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the design of fault to lerant scheduling

strategies using primary-backup approach for computational grids with low replication

costs,” IEEE Trans. Comput., vol. 58, no. 3, pp. 380–393, Mar. 2009.

https://doi.org/10.1016/j.ins.2021.03.003

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1974 http://www.webology.org

24. L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant scheduling with dynamic

number of replicas in heterogeneous systems,” in Proc. 12th IEEE Int. Conf. on High

Performance Computing and Communications. IEEE, 2010, pp. 434–441.

25. G. Xie, G. Zeng, Y. Chen, Y. Bai, Z. Zhou, R. Li, and K. Li, “Minimizing redundancy to

satisfy reliability requirement for a parallel application on heterogeneous service-oriented

systems,” IEEE Trans. Serv. Comput., doi: 10.1109/TSC.2017.2665552, Feb. 2017.

26. G. Xie, G. Zeng, R. Li, and K. Li, “Quantitative fault-tolerance for reliable workflows on

heterogeneous iaas clouds,” IEEE Trans. Cloud Comput., doi:

10.1109/TCC.2017.2780098, Dec. 2017.

27. A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of precedence task graphs

on heterogeneous platforms,” in Proc. IEEE Int. Symp. Parallel and Distributed Processing.

IEEE, 2008, pp. 1–8.

28. A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics providing a guaranteed

global system failure rate,” IEEE Trans. Dependable Secure Comput., vol. 6, no. 4, pp.

241–254, Oct. 2009.

29. G. Koslovski, W.-L. Yeow, C. Westphal, T. T. Huu, J. Montagnat, and P. Vicat-Blanc,

“Reliability support in virtual infrastructures,” in Proc. IEEE 2nd Int. Conf. on Cloud

Computing Technology and Science. IEEE, 2010, pp. 49–58.

30. F. Pop and M. Potop-Butucaru, “Adaptive resource management and scheduling for cloud

computing,” Lecture Notes in Computer Science, vol. 8907, 2014.

31. H. Arabnejad, C. Pahl, G. Estrada, A. Samir, F. Fowley, A fuzzy load balancer for adaptive

fault tolerance management in cloud platforms, in: European Conference on Service-

Oriented and Cloud Computing, Springer, Cham, 2017, pp. 109–124,

http://dx.doi.org/10.1007/978-3-319-67262-5_9.

32. B. Wu, K. Hao, X. Cai, T. Wang, An integrated algorithm for multi-agent fault-tolerant

scheduling based on MOEA, Future Gener. Comput. Syst. 94 (2019) 51–61,

http://dx.doi.org/10.1016/j.future.2018.11.001.

33. T. Tamilvizhi, B. Parvathavarthini, A novel method for adaptive fault tolerance during

load balancing in cloud computing, Cluster Comput. 22 (5) (2019) 10425–10438,

http://dx.doi.org/10.1007/s10586-017-1038-6.

34. R. Buyya, R. Ranjan and R. N. Calheiros, "Modeling and simulation of scalable Cloud

computing environments and the Cloud Sim toolkit: Challenges and opportunities," 2009

International Conference on High Performance Computing & Simulation, 2009, pp. 1-11,

doi: 10.1109/HPCSIM.2009.5192685.

35. Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J.

Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, Kent

Wenger, Pegasus, a workflow management system for science automation, Future

Generation Computer Systems, Volume 46,2015, Pages 17-35, ISSN 0167-739X,

https://doi.org/10.1016/j.future.2014.10.008.

http://dx.doi.org/10.1016/j.future.2018.11.001
http://dx.doi.org/10.1007/s10586-017-1038-6
https://doi.org/10.1016/j.future.2014.10.008

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

1975 http://www.webology.org

36. G. Yao, Y. Ding and K. Hao, "Using Imbalance Characteristic for Fault-Tolerant

Workflow Scheduling in Cloud Systems," in IEEE Transactions on Parallel and Distributed

Systems, vol. 28, no. 12, pp. 3671-3683, 1 Dec. 2017, doi: 10.1109/TPDS.2017.2687923.

 Asma Anjum is a full-time research scholar at Visvesvaraya Technological

University, Belagavi, Karnataka. She has completed her B. E and MTech in computer science and

engineering in the year 2015 and 2017 respectively. Her research interest includes networking and

cloud computing. She can be contacted at email: asmacs13@gmail.com

Dr. Asma Praveen got graduation in Electrical Engg., in 1993 and completed post-graduation in

Computer Science and Engg in 2004 and in 2016 she was awarded Ph.D.in Computer Science and

Engg. She has a rich experience of teaching for more than 25 years. She has published 30 research

papers in leading international journals and conference proceedings, and presented three papers in

national conferences.

• Life member of Institute of Electronics and Telecommunication Engineers (IETE).

 • Treasurer of IETE Gulbarga Sub-Centre for 2018-19 and 2019-2020.

